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Nonstationary flows in laminar and turbulent regimes in differently shaped channels have been inves-
tigated theoretically. An approach has been used which is based on the properties of the symmetry of
differential equations (Lie groups) that describe the process of an accelerated channel flow. A way in
which the self-similar forms of one-dimensional and two-dimensional flow can be obtained on the
basis of symmetries is shown. The self-similar equations of the process and their analytical and nu-
merical solutions are given.

Nonstationary (accelerated) channel flows were usually calculated with the use of operational methods
[1], where the velocity distribution was represented in the form of a functional series, but they were not
always convenient for calculation. The pressure gradient was assigned in this case by the Heaviside function

− 
1
ρ

 
dp
dx

 (t) = 




0 ,
G = const ,

     
t ≤ 0 ,
t > 0 .

But if the pressure gradient is prescribed in the form of an arbitrary function, then frequently the solution
cannot be obtained on the basis of operational methods. In [2, 3], group methods of analysis of turbulent
flows were used which are based on the application of Lie groups. These groups describe the symmetries of
differential equations. We will try to use a similar method to investigate accelerated flows in differently
shaped channels provided that G = G(t).

Let us begin with the analysis of a flow in a plane channel provided that G = G0tn (G0 is a constant
of corresponding dimension), i.e., the pressure gradient is the exponential function of time. When n = 0, the
Heaviside function is obtained. The equation of motion has the form

∂u

∂t
 = − 

1

ρ
 
dp

dx
 + ν 

∂2u

∂y2 = G0tn + ν 
∂2u

∂y2 . (1)

Equation (1) will be investigated on the symmetry in the sense of Lie groups, i.e., let us try to find such
transformations that do not alter this equation. Using the procedure described in [4], we find the infinitesimal
operator (C1, C2, and C3 are constants)

q = (2C1 (n + 1) u + C2) ∂u + C12t∂t + (C1y + C3) ∂y , (2)

which characterizes the symmetries of Eq. (1) and on the basis of which it is possible to find self-similar
variables for this equation. Proceeding from Eq. (2), we compose the differential equation
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C12t 
∂η
∂t

 + (C1y + C3) 
∂η
∂y

 = 0

to find the self-similar coordinate η. The solution of this equation by the method of characteristics yields

η � 
y + C3

 ⁄ C1

√ t
 .

In our problems, it is convenient to adopt C3 = 0 and, using the kinematic viscosity, to represent the self-
similar coordinate in a dimensionless form:

η = 
y

√νt
 . (3)

Similarly, we find the self-similar function with account for the fact that in our case it is convenient to select
time as a parametric variable. Then, the velocity u can be expressed in terms of the self-similar function,
having adopted that C2 = 0:

u = 
ν
h

 f (η) 
tn+1νn+1

h2n+2
 . (4)

Using (3) and (4), we rearrange Eq. (1) to the ordinary differential equation

d2f

dη2 + 
η
2

 
df

dη
 − f (n + 1) = − A , (5)

in which A = G0ν−n−2h2n+3. Equation (5) is solved by the method of variation of constants in the form

f = D (η)1 F1 



− 1 − n , 

1
2

 ; − 
η2

4



 + E (η) η1F1 




− 

1
2

 − n , 
3
2

 ; − 
η2

4




 , (6)

where 1F1(a; b; z) is the Kummer confluent geometrical function; the functions D(η) and E(η) are determined
by solving the system of equations

dD
dη

 1F1 



− 1 − n , 

1
2

 ; − 
η2

4




 + 

dE
dη

 E (η) η1F1 



− 

1
2

 − n , 
3
2

 ; − 
η2

4




 = 0 ,

dD
dη

 

d1F1 



− 1 − n , 

1
2

 ; − 
η2

4





dη
 + 

dE
dη

 

dη1F1 



− 

1
2

 − n , 
3
2

 ; − 
η2

4





dη
 = − A .

Solving this system and substituting the results into Eq. (6), we come to

f = A1F1 



− 1 − n , 

1
2

 ; − 
η2

4




 






∫ 
0

η



6η1F1 




− 

1
2

 − n , 
3
2

 ; − 
η2

4



 dη 





1F1 



− 1 − n , 

1
2

 ; − 
η2

4




 ×
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× 



61F1 




− 

1
2

 − n , 
3
2

 ; − 
η2

4




 + (1 + 2n) η1

2F1 



1
2

 − n , 
5
2

 ; − 
η2

4




 +

+ 6 (1 + n) η1
2F1 




− 

1
2

 − n , 
3
2

 ; − 
η2

4




 1F1 




− n , 

3
2

 ; − 
η2

4








  




 −1

 



 + c1  







 −

− Aη1F1 



− 

1
2

 − n , 
3
2

 ; − 
η2

4




 






∫ 
0

η



6η1F1 




− 

1
2

 − n , 
3
2

 ; − 
η2

4




 dη 





1F1 



− 1 − n , 

1
2

 ; − 
η2

4




 ×

× 



61F1 




− 

1
2

 − n , 
3
2

 ; − 
η2

4




 + (1 + 2n) η1

2F1 



1
2

 − n , 
5
2

 ; − 
η2

4




 + 

+ 6 (1 + n) η1
2F1 




− 

1
2

 − n , 
3
2

 ; − 
η2

4




 1F1 




− n , 

3
2

 ; − 
η2

4








  




 −1

  



 + c2  




 .

Using the boundary conditions

f = 0   for   y = 0 ,   f = 0   for   y = h , (7)

we find the integration constants c1 and c2. In the final form the expression looks like

f = A1F1 



− 1 − n , 

1
2

 ; − 
η2

4




 Φ − Aη1F1 




− 

1
2

 − n , 
3
2

 ; − 
η2

4




 ×

× 













Φ + 

ηh1F1 



− 

1

2
 − n , 

3
2

 ; − 
ηh

2

4




 − 1F1 




− 1 − n , 

1

2
 ; − 

ηh
2

4





ηh1F1 



− 

1

2
 − n , 

3

2
 ; − 

ηh
2

4





 Φh













 , (8)

in which

Φ = ∫ 
0

η 


6η1F1 




− 

1
2

 − n , 
3
2

 ; − 
η2

4




 dη 





1F1 



− 1 − n , 

1
2

 ; − 
η2

4




 



61F1 




− 

1
2

 − n , 
3
2

 ; − 
η2

4




 +

+ (1 + 2n) η1
2F1 




1
2

 − n , 
5
2

 ; − 
η2

4




 + 6 (1 + n) η1

2F1 



− 

1
2

 − n , 
3
2

 ; − 
η2

4




 1F1 




− n , 

3
2

 ; − 
η2

4








  




 −1

  



 ;

Φh = ∫ 
0

ηh 


6η1F1 




− 

1
2

 − n , 
3
2

 ; − 
η2

4



 dη 





1F1 



− 1 − n , 

1
2

 ; − 
η2

4




 



61F1 




− 

1
2

 − n , 
3
2

 ; − 
η2

4




 +

+ (1 + 2n) η1
2F1 




1
2

 − n , 
5
2

 ; − 
η2

4




 + 6 (1 + n) η1

2F1 



− 

1
2

 − n , 
3
2

 ; − 
η2

4




 1F1 




− n , 

3
2

 ; − 
η2

4








  




 −1

  



 ;
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ηh = 
h

√νt
 .

The velocity profile can be easily calculated on the basis of Eq. (4) with account for (8) using contemporary
applied packages such as "Mathematica." The alternative path is direct numerical integration of Eq. (5) with
account for boundary conditions (7), which can be easily implemented using a package of the series "Math-
cad." To test the relations obtained, calculations were carried out for n = 0. For this variant there is a solution
obtained on the basis of the Laplace transformations [1]:

u = − 
dp ⁄ dx

2µ
 
h2

4
 
















1 − 



y
h ⁄ 2





2



 − 4  ∑ 

k=0

∞

 (− 1)k 

cos 








π
2

 + kπ



 

y
h ⁄ 2









π
2

 + kπ



3













 exp 



− 4 





π
2

 + kπ




2

 Fo



 . (9)

In this formula, Fo = tν ⁄ h2 is the Fourier number and the coordinate origin in the transverse direction y = 0
corresponds to the center of the channel. The comparison of the results by formulas (4) and (9) is given
below:

Fo 1 ⁄ 25 1 ⁄ 9 1 ⁄ 4 1 2 5 10 50

∆, % 0 2.3 9.5 18.6 14.1 6.3 3.2 0.7

Here ∆ is the maximum relative difference of the velocities (on the channel axis) calculated by formulas (4)
and (9). It is seen that the maximum difference is attained when Fo = 1, and then, as the flow develops, it
tends to zero. The advantage of formula (4) is that it allows one to easily calculate the velocity distribution
in the accelerated flow in the case of exponential change of the pressure gradient in time.

In the case of a cylindrical channel and exponential variation of the pressure gradient, the equation of
motion has the form

∂u

∂t
 = − 

1

ρ
 
dp

dx
 + ν 





∂2u

∂r2  + 
1

r
 
∂u

∂r




 = G0t

n + ν 




∂2u

∂r2  + 
1

r
 
∂u

∂r




 . (10)

The symmetry of this equation is characterized by the following infinitesimal operator:

q = (2C1 (n + 1) u + C2) ∂u + C12t∂t + C1r∂r .

The corresponding self-similar variables have the form

η = 
r

√νt
 ,   u = 

ν
R

 f (η) 
tn+1νn+1

R2n+2
 ,

where R is the channel radius. Using these variables, we transform (10) to

d2f

dη2 + 




η
2

 + 
1

η



 df

dη
 − f (n + 1) = − A .

The solution of this equation is sought by the method of variation of constants, using the solution of the
corresponding homogeneous equation
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f = D (η) 1F1 



− 1 − n , 1 ; − 

η2

4




 + E (η) Gm 











   



  , 




2 + n







 , 






0, 0


  , 



   







  , 

η2

4




 , (11)

in which

Gm 









a1 , ... , ak




 , 



ak+1 , ... , ap








 , 







b1 , ... , bm




 , 



bm+1 , ... , bq








 , z


 = Gp q

m k 



z 





a1 , ... , ap

b1 , ... , bq




 =

= 
1

2πi
 � 

Γ (1 − a1 − s) ... Γ (1 − ak − s) Γ (b1 + s) ... Γ (bm + s)
Γ (ak+1 + s) ... Γ (ap + s) Γ (1 − bm+1 − s) ... (Γ (1 − bq − s)

 z−s ds

is the so-called Meijer G function. The integration contour lies between the poles of the functions Γ(1
− ai − s) and Γ(bi + s). The gap in the curly brackets in Eq. (11) means that these coefficients are absent, i.e.,

Gm 










   



 , 



2 + n






  , 







0, 0


  , 



   







  , 

η2

4




 = 

1

2πi
 � 

Γ (s)
Γ (2 + n + s)

 



η2

4





−s

 ds .

The functions D(η) and E(η) are determined, just as in the case of a plane channel, from the solution of the
corresponding system of equations:

dD
dη

 1F1 



− 1 − n , 1 ; − 

η2

4




 + 

dE
dη

 Gm 










   



  , 




2 + n







 , 






0, 0


  , 



   







 , 

η2

4




 = 0 ,

dD
dη

 
n + 1

2
 η1F1 




− n , 2 ; − 

η2

4




 − 

dE
dη

 
η
2

 Gm 










  



  , 




1 + n






  , 








− 1, 0


  , 



   








 , 

η2

4




 = − A .

Having solved this system and substituted the results into Eq. (11), we obtain an expression for the velocity
distribution. For a cylindrical channel the integration constants are found from the boundary conditions

f ′ = 0   for   η = 0 ,   f = 0   for   η = ηR = 
R

√νt
 .

For an annular channel with internal radius R1 and external radius R2, the boundary conditions have the form

f = 0   for   η = η1 = 
R1

√νt
 ,   f = 0   for   η = η2 = 

R2

√νt
 . (12)

The calculations carried out for the cylindrical channel with n = 0 show that the results closely coincide with
those found on the basis of the relation

u = − 
dp ⁄ dx

4µ
 R2 













1 − 



r

R





2



 − 8  ∑ 

k=0

∞

 (− 1)k 

J0 

αk 

r
R





αk
3J1 (αk)










 exp  − αk

2 Fo
  ,

which is obtained by the operational method [1]. Here J0 and J1 are the Bessel functions of the first kind of
zero and first order, respectively; αk are the zeros of the function J0.

Let us consider a curvilinear channel. The equation of motion with an exponential change in the pres-
sure gradient has the following form:
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∂u

∂t
 = − 

1

ρr
 
∂p

∂ϕ
 + ν 





∂2u

∂r2  + 
1

r
 
∂u

∂r
 − 

u

r2




 = 

G0t
n

r
 + ν 





∂2u

∂r2  + 
1

r
 
∂u

∂r
 − 

u

r2




 . (13)

The flow is along the azimuthal coordinate ϕ. The azimuthal pressure gradient is independent of the radial
coordinate and is an exponential function of time. The symmetries of Eq. (13) are characterized by the infini-
tesimal operator

q = (2n + 1) u∂u + 2t∂t + r∂r ,

which gives the following self-similar variables:

η = 
r

√νt
 ,   u = 

ν
R1

 f (η) t
2n+1

2  ν
2n+1

2

R1
2n+1

 .

Using them, we transform Eq. (13) to

d2f

dη2 + 




η
2

 + 
1

η



 
df

dη
 − f 


n + 

1

2
 + 

1

η2



 = − 

B

η
 , (14)

where B = G0ν−n−2h2n+2. The solution of Eq. (14) with boundary conditions (12) has the form

f = B1F1 



− n , 2 ; − 

η2

4



 






∫ 

η1

η



Gm 










   



  , 





3
2

 + n







 , 








− 

1
2

 , 
1
2




 , 


   








 , 

η2

4




 dη ×

× 



η 




η
2

 1F1 



− n , 2 ; − 

η2

4




 Gm 











− 1



 , 





1
2

 + n







 , 








− 

3
2

 , − 
1
2




 , 


0








 , 

η2

4




 −

− 
nη
4

 1F1 



1 − n , 3 ; − 

η2

4




 Gm 










  



  , 





3
2

 + n







 , 








− 

1
2

 , 
1
2




 , 


  








 , 

η2

4




 



  




−1

  



 + c1  




 −

− B Gm 









   



  , 





3
2

 + n







 , 








− 

1
2

 , 
1
2




 , 


   








 , 

η2

4




 






 ∫ 

η1

η




1F1 



− n , 2 ; − 

η2

4



 dη ×

× 



η 




η
2

 1F1 



− n , 2 ; − 

η2

4




 Gm 











− 1


  , 





1
2

 + n







 , 








− 

3
2

 , − 
1
2




 , 


0








 , 

η2

4




 −

− 
nη
4

 1F1 



1 − n , 3 ; − 

η2

4




 Gm 










  



  , 





3
2

 + n







 , 








− 

1
2

 , 
1
2




 , 


  








 , 

η2

4



 



  




 −1

  



 + c2  







 ,

where

c1 = Gm 









  



  , 





3

2
 + n








 , 








− 

1

2
 , 

1

2



 , 


   








 , 

η1
2

4




 


 1F1 




− n , 2 ; − 

η2
2

4




 N1 +
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+ Gm 










   



 , 





3

2
 + n








 , 








− 

1

2
 , 

1

2



 , 


   








 , 

η2
2

4




 N2




 


 1F1 




− n , 2 ; − 

η1
2

4




 ×

× Gm 









  



 , 





3

2
 + n








 , 








− 

1

2
 , 

1

2



 , 


  








 , 

η2
2

4




 − 1F1 




− n , 2 ; − 

η2
2

4




 ×

× Gm 










   



  , 





3

2
 + n








 , 








− 

1

2
 , 

1

2



 , 


   








 , 

η1
2

4




 




−1

 ;

c2 = − 


 1F1 




− n , 2 ; − 

η1
2

4




 


 1F1 




− n , 2 ; − 

η2
2

4




 N1 + 

+Gm 









  



  , 





3

2
 + n








 , 








− 

1

2
 , 

1

2



 , 


   








 , 

η2
2

4




 N2




  



 


 1F1 




− n , 2 ; − 

η1
2

4




 ×

× Gm 










   



  , 





3
2

 + n







 , 








− 

1
2

 , 
1

2



 , 


   








 , 

η2
2

4




 − 1F1 




− n , 2 , − 

η2
2

4




 ×

× Gm 










   



  , 





3

2
 + n








 , 








− 

1

2
 , 

1

2



 , 


   








 , 

η1
2

4




  




−1

 ;

N1 = ∫ 

η1

η2

 



Gm 










   



  , 





3
2

 + n







 , 








− 

1
2

 , 
1
2




 , 


   








 , 

η2

4




 dη 




η 




η
2

 1F1 



− n , 2 ; − 

η2

4




 ×

× Gm 









 − 1


  , 





1
2

 + n







 , 








− 

3
2

 , − 
1
2




 , 


0








 , 

η2

4




 − 

nη
4

 1F1 



1 − n , 3 ; − 

η2

4




 ×

× Gm 









   



  , 





3
2

 + n







 , 








− 

1
2

 , 
1
2




 , 


   








 , 

η2

4




  



  




 −1

  



 ;

N2 = ∫ 

η1

η2

 


 1F1 




− n , 2 ; − 

η2

4




 dη 




η 




η
2

 1F1 



− n , 2 ; − 

η2

4




 ×

× Gm 










− 1


  , 





1
2

 + n







 , 








− 

3
2

 , − 
1
2




 , 


0








 , 

η2

4




 − 

nη
4

 1F1 



− 1 − n , 3 ; − 

η2

4




 ×

× Gm 










   



  , 





3

2
 + n








 , 








− 

1
2

 , 
1

2



 , 


  








 , 

η2

4




  



  




 −1

  



 .

The results of calculations for the case R2
 ⁄ R1 = 1.1 for n = 0 are shown in Fig. 1 in a normalized form. The

ordinate axis has the function f(η) related to its maximum value. It is seen from Fig. 1 that with the devel-
opment of the flow (with increase in the Fourier number Fo = tν ⁄ R1

2) the maximum of the velocity profile
moves from the convex wall to the center of the channel. In the initial stage of development (Fo = 0.01), the
velocity profile has a maximum near the convex wall. Thereafter, when the flow has already acquired some
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initial momentum, this factor (the radial pressure gradient) exerts a not so substantial influence on the shape
of the velocity profile, and its maximum tends to the channel center. At large values of the Fourier number
(Fo > 1) the nonstationary velocity profile agrees well with the theoretical stationary one [5].

Now, we consider a hypothetical turbulent accelerated flow in a plane channel assuming that the flow
induced by a nonstationary pressure gradient is instantly turbulized. Of course, under real conditions the ap-
pearing flow always has a laminar character; however, under large pressure gradients the time between the
occurrence of the flow and its transition to a turbulent regime can be insignificant. In this case it is possible
to neglect this delay in time and consider the flow to be turbulent from the start. The equation of motion has
the form

∂u

∂t
 = − 

1
ρ

 
dp
dx

 + 
∂
∂y

 



νΣ 

∂u
∂y




 = G0tn + 

∂
∂y

 



νΣ 

∂u

∂y




 . (15)

It is assumed here that the pressure gradient has an exponential character, whereas for the total νΣ (turbulent
and molecular) viscosity we use the model of the mixing length for

νΣ = ν + χ2y2 
∂u
∂y

 ,

where χ = 0.4 is the von Ka′rma′n constant. The calculation is to be carried out up to the middle of the
channel, assuming that the flow is symmetrical relative to the center of the channel.

The symmetries of Eq. (15) for n = −1.5 can be described by the infinitesimal operator

q = (− C1u + C2) ∂u + C12t∂t + C1y∂y ,

which yields the following self-similar variables:

η = 
y

√νt
 ,   u = √ ν

t
 f (η) . (16)

Using them, we make Eq. (15) dimensionless:

d

dη
 







1 + χ2η2 

df

dη



 
df

dη



 
η

2
 
df

dη
 + 

1

2
 f = − 

G0t
3 ⁄ 2+n

√ν
 . (17)

We can see that the total self-similarity exists only when n = −1.5, as was noted above. However, this is not
an obstacle for numerical integration of (17), since the time can be interpreted as the parameter in integration

Fig. 1. Velocity profiles of an accelerated flow in a curvilinear channel:
1) Fo = 0.01; 2) 0.1; 3) 1.
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over η, i.e., to use as if the "marching" method of calculation in time. The procedure of numerical integration
of Eq. (7) is easily realized with the aid of the "Mathcad" package under the boundary conditions

f = 0   for   y = 0 ,   f ′ = 0   for   y = h ⁄ 2 ,

which reflect the symmetry of the flow relative to the center of the channel.
Equation (17) was obtained assuming the presence of the exponential pressure gradient. However, as

we see, this limitation yields the total self-similarity only on the condition that n = −1.5. Moreover, neither
the variables in (17), nor the left-hand side of (17) depend on n. Consequently, there is no need to restrict
the form of the function of the pressure gradient. We may analyze the case where the pressure gradient is an
arbitrary function of time:

− 
1
ρ

 
dp
dx

 (t) = G (t) . (18)

Using Eqs. (16) and (18), from Eq. (15) we obtain

d

dη
 





1 + χ2η2 

df

dη



 
df

dη



 + 

η
2

 
df

dη
 + 

1

2
 f = − 

G (t) t3
 ⁄ 2

√ν
 .

This equation is integrated in the same way as Eq. (17), i.e., the term G(t)t
3⁄2 is prescribed numerically at

each step in time.
We consider the ν-model. In addition to Eq. (15) it also contains an equation that describes the be-

havior of the total νΣ viscosity [6]:

∂νΣ

∂t
 = νΣ 

∂2νΣ

∂y2  + 




∂νΣ

∂y





2

 + Ak (νΣ − jν) 




∂u

∂y




 − 

Bk

Lk
2 (νΣ − jν) νΣ , (19)

where Ak = 0.133, Bk = 0.8, and Lk = y; j may be equal to unity if, in the last two terms in Eq. (19), there
is turbulent viscosity, or to zero if the viscosity is total. The group analysis of the system of equations (15)
and (19) shows that its symmetries at j = 0 are described by the following infinitesimal operator:

q = (1 + n) u∂u + 2t∂t + (2 + n) y∂y + (3 + 2n) νΣ ∂νΣ
 .

When j = 1, we failed to obtain expressions for the groups of symmetry. However, as we can see below, this
is not a substantial problem in numerical calculations.

Using the infinitesimal operator, we find the self-similar variables

η = 
yh3+2n

(νt)2+n
 ,   u = 

ν2+n t1+n

h3+2n
 f (η) ,   νΣ = 

ν4+2n t3+2n

h6+4n
 N (η)  ,

with the aid of which we transform the system (15), (19) to the self-similar form

d2f

dη2 N + 
dN

dη
 
df

dη
 + (2 + n) η 

df

dη
 − (n + 1) f = − 

G0h3+2n

ν2+n
 ,

d2N

dη2  N + 


dN

dη




2

 + (2 + n) η 
dN

dη
 + Ak 




N − 

j

Fo3+2n



 
df

dη
 + 

Bk

η2 

N − 

j

Fo3+2n



 N − (3 + 2n) N = 0 .
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As we see, the given system of equations is not completely self-similar because of the presence of
the constant j. When j = 0, we come to a completely self-similar system of equations. The presence of the
non-self-similarity must not cause difficulties in numerical calculation, since at each step of the marching
variable it is necessary to prescribe Fo as a constant parameter and perform the solution of the system as of
the system of ordinary differential equations.

We consider the k–ε model of turbulent viscosity

νΣ = ν + Cν 
k2

ε
 .

According to this model, the equation of motion is supplemented with two equations for the kinetic energy
of turbulence k and dissipation rate ε [7]:

∂k

∂t
 = 

∂
∂y

 







ν + Cν 

k2

ε



 
∂u

∂y




 + Cν 

k2

ε
 




∂u

∂y





2

 − ε ,

∂ε
∂t

 = 
∂
∂y

 







ν + Cν 

k2

ε



 
∂ε
∂y




 + CνC1ε k 





∂u

∂y





2

 − C2ε 
ε2

k
 , (20)

where Cν, C1ε, and C2ε are the constants of the model.
When n = −1.5, the system of equations (15) and (20) has the symmetries

q = 


1
2

 C1y + C2



 ∂y + C1t∂t − 



1
2

 C1u + C3



 ∂u − C1k∂k − 2C1ε∂ε ,

to which there correspond the following self-similar variables:

η = 
y

√νt
 ,   u = √ ν

t
 f (η) ,   k = 

ν

t
 K (η) ,   ε = 

ν

t2
 E (η) .

On their basis we find




1 + Cν 

K2

E




 
d2f

dη2 + 




η

2
 − Cν 

K2

E2 
dE

dη
 + 2Cν 

K

E
 
dK

dη




 
df

dη
 + 

1

2
 f = − 

G0t3
 ⁄ 2+n

√ν
 ,




1 + Cν 

K2

E




 
d2K

dη2  + 




η
2

 − Cν 
K2

E2 
dE

dη
 + 2Cν 

K

E
 
dK

dη



 
dK

dη
 + 


1 + Cν 

K

E
 


df

dη




 2



 K − E = 0 ,




1 + Cν 

K2

E




 
d2E

dη2 + 




η
2

 − Cν 
K2

E2 
dE

dη
 + 2Cν 

K

E
 
dK

dη



 
dE

dη
 + 


2 − C2ε 

E

K




 E + C1εCνK 



df

dη




2

 = 0 

Just as in the case of the mixing-path model, this model is strictly approximated for n = −1.5. Again, this is
not an obstacle for numerical integration, since the time can be interpreted as the parameter in integration
over η. If Eq. (18) is used for the pressure gradient, we have the equation of motion in a more general form:




1 + Cν 

K2

E




 
d2f

dη2 + 




η
2

 − Cν 
K2

E2 
dE

dη
 + 2Cν 

K

E
 
dK

dη



 
df

dη
 + 

1

2
 f = − 

Gt3
 ⁄ 2

√ν
 .
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For a cylindrical channel the accelerated flow is described by the system

∂u

∂t
 = − 

1
ρ

 
dp
dx

 + 
1
r

 
∂
∂r

 







ν + Cν 

k2

ε



 r 

∂u

∂r




 = G0t

n + 
1
r

 
∂
∂r

 







ν + Cν 

k2

ε



 r 

∂u
∂r




 ,

∂k

∂t
 = 

1
r

 
∂
∂r

 







ν + Cν 

k2

ε



 r 

∂k

∂r




 + Cν 

k2

ε
 




∂u

∂r




2

 − ε ,   
∂ε
∂t

 = 
1
r

 
∂
∂r

 







ν + Cν 

k2

ε



 r 

∂ε
∂r




 + CνC1εk 





∂u

∂r





2

 − C2ε 
ε2

k
 ,

which has the infinitesimal operator for n = −1.5:

q = 
1
2

 C1r∂r + C1t∂t − 

1
2

 C1u + C2



 ∂u − C1k∂k − 2C1ε∂ε .

This operator gives the following self-similar forms:

η = 
r

√νt
 ,   u = √ ν

t
 f (η) ,   k = 

ν
t
 K (η) ,   ε = 

ν
t2

 E (η) ,




1 + Cν 

K2

E




 
d2f

dη2 + 




η

2
 + 

1

η
 − Cν 

K2

E2 
dE

dη
 + 2Cν 

K

E
 
dK

dη
 + Cν 

K2

E
 
1

η




 
df

dη
 + 

1

2
 f = − 

G0t3
 ⁄ 2+n

√ ν
 ,




1 + Cν 

K2

E




 
d2K

dη2 + 




η

2
 + 

1

η
 − Cν 

K2

E2 
dE

dη
 + 2Cν 

K

E
 
dK

dη
 + Cν 

K2

E
 
1

η




 
dK

dη
 + 




1 + Cν 

K

E
 




df

dη




 2


 K − E = 0 ,




1 + Cν 

K2

E




 
d2E

dη2 + 




η
2

 + 
1

η
 − Cν 

K2

E2 
dE

dη
 + 2Cν 

K

E
 
dK

dη
 + Cν 

K2

E
 
1

η




 
dE

dη
 + 


2 − C2ε 

E

K




 E +

+ C1εCνK 


df
dη





2

 = 0 .

With the arbitrary form of the pressure gradient function (18), the equation of motion is transformed to




1 + Cν 

K2

E




 
d2f

dη2 + 




η
2

 + 
1

η
 − Cν 

K2

E2 
dE

dη
 + 2Cν 

K

E
 
dK

dη
 + Cν 

K2

E
 
1

η




 
df

dη
 + 

1

2
 f = − 

Gt3
 ⁄ 2

√ν
 .

In the case of a curvilinear channel the k–ε model has the form

∂u

∂t
 = − 

1
ρ

 
dp
dx

 + 
1
r

 
∂
∂r

 







ν + Cν 

k2

ε



 



r 

∂u

∂r
 − u








 + 




ν + Cν 

k2

ε



 
∂
∂r

 


u
r



 =

= G0tn + 
1
r
 
∂
∂r

 







ν + Cν 

k2

ε



 



r 

∂u

∂r
 − u








 + 




ν + Cν 

k2

ε



 
∂
∂r

 


u
r



 ,

∂k

∂t
 = 

1
r
 

∂
∂r

 







ν + Cν 

k2

ε



 r 

∂k

∂r




 + Cν 

k2

ε
 




∂u

∂r
 + 

u
r





2

 − ε ,
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∂ε
∂t

 = 
1
r

 
∂
∂r

 







ν + Cν 

k2

ε



 r 

∂ε
∂r




 + CνC1εk 





∂u
∂r

 + 
u
r





2

 − C2ε 
ε2

k
 .

The symmetries of this system for n = −1.5 are

q = 
1
2

 r∂r + t∂t − 
1
2

 u∂u − k∂k − 2ε∂ε ,

which makes it possible to obtain

η = 
r

√νt
 ,   u = √ ν

t
 f (η) ,   k = 

ν
t
 K (η) ,   ε = 

ν
t2

 E (η) ,




1 + Cν 

K2

E




 
d2f

dη2 + 




η
2

 + 
1

η
 − Cν 

K2

E2 
dE

dη
 + 2Cν 

K

E
 
dK

dη
 + Cν 

K2

E
 
1

η



 
df

dη
 +

+ 




1

2
 − 

1

η2 − Cν 
K2

E2 
1

η2 + Cν 
K2

ηE2 
dE

dη
 − 2Cν 

K

ηE
 
dK

dη




 f = − 

G0t3
 ⁄ 2+n

√ν
 ,




1 + Cν 

K2

E




 
d2K

dη2 + 




η

2
 + 

1

η
 − Cν 

K2

E2 
dE

dη
 + 2Cν 

K

E
 
dK

dη
 + Cν 

K2

E
 
1

η




 
dK

dη
 +

+ 



1 + Cν 

K

E
 




df

dη




 2

 + Cν 
K

E
 
f 2

η2 + 2Cν 
Kf

ηE
 
df

dη




 K − E = 0,




1 + Cν 

K2

E




 
d2E

dη2 + 




η
2

 + 
1

η
 − Cν 

K2

E2 
dE

dη
 + 2Cν 

K

E
 
dK

dη
 + Cν 

K2

E
 
1

η




 
dE

dη
 + 


2 − C2ε 

E

K




 E +

+ C1εCνK 






df
dη





 2

 + 


f
η





 2

 + 2 
df
dη

 
f
η




 = 0 .

Provided that Eq. (18) is satisfied, the equation of motion takes the form




1 + Cν 

K2

E




 
d2f

dη2 + 




η
2

 + 
1

η
 − Cν 

K2

E2 
dE

dη
 + 2Cν 

K

E
 
dK

dη
 + Cν 

K2

E
 
1

η




 
df

dη
 +

+ 




1

2
 − 

1

η2 − Cν 
K2

E
 

1

η2 + Cν 
K2

ηE2 
dE

dη
 − 2Cν 

K

ηE
 
dK

dη



 f = − 

Gt3
 ⁄ 2

√ν
 .

Now we consider two-dimensional flows. First, take the channel with a rectangle cross section with
a laminar mode of flow. The equation of motion has the form

∂u

∂t
 = − 

1

ρ
 
dp

dx
 + ν 





∂2u

∂y2 + 
∂2u

∂z2




 = G0t

n + ν 




∂2u

∂y2 + 
∂2u

∂z2




 .

Its symmetries are described by the expression
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q = (2C1 (n + 1) u + C2) ∂u + C12t∂t + (C1y + C3) ∂y + (C1y + C4) ∂z .

Consequently, the self-similar forms have the form

η = 
y

√νt
 ,   ξ = 

z

√νt
 ,   u = 

ν
h

 f (η, ξ) 
tn+1νn+1

h2n+2
 .

They allow us to obtain the equation

∂2f

∂η2 + 
∂2f

∂ξ2 + 
η
2

 
∂f

∂η
 + 

ξ
2

 
∂f

∂ξ
 − f (n + 1) = − A ,

which should be integrated under the boundary conditions

f = 0   for   y = 0 ,   y = h ,   f = 0   for   z = 0 ,   z = b ,

where h is the width of the channel in the y direction and b in the z direction, and the time is used as the
parameter.

For the curvilinear two-dimensional channel the following relations are valid:
• equation of motion

∂u

∂t
 = − 

1

ρr
 
∂p

∂ϕ
 + ν 





∂2u

∂r2  + 
1

r
 
∂u

∂r
 − 

u

r2 + 
∂2u

∂z2




 = 

G0tn

r
 + ν 





∂2u

∂r2  + 
1

r
 
∂u

∂r
 − 

u

r2 + 
∂2u

∂z2




 ,

• infinitesimal operator

q = C1 (2n + 1) u∂u + C12t∂t + C1r∂r + (C1z + C2) ∂z ,

• self-similar variables

η = 
r

√νt
 ,   ξ = 

z

√νt
 ,   u = 

ν
R1

 f (η, ξ) 
t

2n+1
2 ν

2n+1
2

R1
2n+1

 ,

• self-similar equation

∂2f

∂η2 + 
∂2f

∂ξ2 + 




η
2

  + 
1

η



 
∂f

∂η
 + 

ξ
2

 
∂f

∂ξ
 − f 


n + 

1

2
 + 

1

η2



 = − 

B

η
 ,

• boundary conditions

f = 0   for   r = R1 ,   r = R2 ,   f = 0   for   z = 0 ,   z = b .

The two-dimensional turbulent flow will be analyzed with the aid of the k–ε model, since the other
two models that were used in the present investigation for one-dimensional flows are inconve-nient in this
case. For a rectangular channel flow the model has the form

∂u

∂t
 = − 

1
ρ

 
dp
dx

 + 
∂
∂y

 







ν + Cν 

k2

ε



 
∂u

∂y




 + 

∂
∂z

 







ν + Cν 

k2

ε



 
∂u
∂z




 =
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= G0tn + 
∂
∂y

 







ν + Cν 

k2

ε



 
∂u

∂y




 + 

∂
∂z

 







ν + Cν 

k2

ε



 
∂u

∂z




 ,

∂k

∂t
 = 

∂
∂y

 







ν + Cν 

k2

ε



 
∂k

∂y




 + 

∂
∂z

 







ν + Cν 

k2

ε



 
∂k

∂z




 + Cν 

k2

ε
 








∂u

∂y





 2

 + 




∂u

∂z




 2


 − ε ,

∂ε
∂t

 = 
∂
∂y

 







ν + Cν 

k2

ε



 
∂ε
∂y




 + 

∂
∂z

 







ν + Cν 

k2

ε



 
∂ε
∂z




 + CνC1εk 









∂u

∂y





 2

 + 




∂u

∂z





 2


 − C2ε 

ε2

k
 .

This system of equations for n = −1.5 has the symmetries

q = 


1
2

 C1y + C2



 ∂y + 



1
2

 C1z + C3



 ∂z + C1t∂t − 



1
2

 C1u + C4



 ∂u − C1k∂k − 2C1ε∂ε ,

which generate the following self-similar forms:

η = 
y

√νt
 ,   ξ = 

z

√νt
 ,   u = √ ν

t
 f (η, ξ) ,   k = 

ν
t
 K (η, ξ) ,   ε = 

ν
t2

 E (η, ξ) ,




1 + Cν 

K2

E




 
∂2f

∂η2 + 



1 + Cν 

K2

E




 
∂2f

∂ξ2 + 




η
2

 − Cν 
K2

E2 
∂E

∂η
 + 2Cν 

K

E
 
∂K

∂η




 
∂f

∂η
 +

+ 




ξ

2
 − Cν 

K2

E2 
∂E

∂ξ
 + 2Cν 

K

E
 
∂K

∂ξ




 
∂f

∂ξ
 + 

1

2
 f = − 

G0t3
 ⁄ 2+n

√ν
 ,




1 + Cν 

K2

E




 
∂2K

∂η2 + 



1 + Cν 

K2

E




 
∂2K

∂ξ2  + 




η
2

 − Cν 
K2

E2 
∂E

∂η
 + 2Cν 

K

E
 
∂K

∂η



 
∂K

∂η
 +

+ 




η
2

 − Cν 
K2

E2 
∂E

∂ξ
 + 2Cν 

K

E
 
∂K

∂ξ




 
∂K

∂ξ
 + 




1 + Cν 

K

E
 




∂f

∂η




 2

 + Cν 
K

E
 




∂f

∂ξ




 2


 K − E = 0 ,




1 + Cν 

K2

E




 
∂2E

∂η2 + 



1 + Cν 

K2

E




 
∂2E

∂ξ2  + 




η
2

 − Cν 
K2

E2 
∂E

∂η
 + 2Cν 

K

E
 
∂K

∂η




 
∂E

∂η
 +

+ 




η
2

 − Cν 
K2

E2 
∂E

∂ξ
 + 2Cν 

K

E
 
∂K

∂ξ




 
∂E

∂ξ
 + 


2 − C2ε 

E

K




 E + C1εCνK 









∂f

∂η




 2

 + 




∂f

∂ξ




 2


 = 0

When Eq. (18) is satisfied, for the equation of motion we have




1 + Cν 

K2

E




 
∂2f

∂η2 + 



1 + Cν 

K2

E




 
∂2f

∂ξ2 + 




η
2

 − Cν 
K2

E2 
∂E

∂η
 + 2Cν 

K

E
 
∂K

∂η




 
∂f

∂η
 +

+ 




ξ
2

 − Cν 
K2

E2 
∂E

∂ξ
 + 2Cν 

K

E
 
∂K

∂ξ




 
∂f

∂ξ
 + 

1

2
 f = − 

Gt3
 ⁄ 2

√ν
 .
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The last of the cases considered is a turbulent two-dimensional curvilinear channel flow. The k–ε
model here has the form

∂u

∂t
 = − 

1
ρ

 
dp
dx

 + 
1
r

 
∂
∂y

 







ν + Cν 

k2

ε



 



r 

∂u

∂r
 − u








 + 




ν + Cν 

k2

ε



 
∂
∂r

 


u
r



 + 

∂
∂z

 







ν + Cν 

k2

ε



 
∂u

∂z




 =

= G0tn + 
1
r
 
∂
∂r

 







ν + Cν 

k2

ε



 



r 

∂u
∂r

 − u







 + 




ν + Cν 

k2

ε



 
∂
∂r

 


u
r



 + 

∂
∂z

 







ν + Cν 

k2

ε



 
∂u

∂z




 ,

∂k

∂t
 = 

1
r
 
∂
∂r

 







ν + Cν 

k2

ε



 r 

∂k

∂r




 + 

∂
∂z

 







ν + Cν 

k2

ε



 
∂k

∂z




 + Cν 

k2

ε
 








∂u
∂r

 + 
u
r





 2

 + 




∂u
∂z





 2


 − ε ,

∂ε
∂t

 = 
1
r

 
∂
∂r

 







ν + Cν 

k2

ε



 r 

∂ε
∂r




 + 

∂
∂z

 







ν + Cν 

k2

ε



 
∂ε
∂z




 + CνC1εk 









∂u

∂r
 + 

u
r





 2

 + 




∂u

∂z





 2


 − C2ε 

ε2

k
 .

The symmetries of this system for n = −1.5 are characterized by the expression

q = 
1
2

 r∂r + 
1
2

 z∂z + t∂t − 
1
2

 u∂u − k∂k − 2ε∂ε .

The self-similar forms are accordingly the following:

η = 
r

√νt
 ,   ξ = 

z

√νt
 ,   u = √ ν

t
 f (η, ξ) ,   k = 

ν
t
 K (η, ξ) ,   ε = 

ν
t2

 E (η, ξ) ,




1 + Cν 

K2

E




 
∂2f

∂η2 + 



1 + Cν 

K2

E




 
∂2f

∂ξ2 + 




η
2

 + 
1

η
 − Cν 

K2

E2 
∂E

∂η
 + 2Cν 

K

E
 
∂K

∂η
 + Cν 

K2

E
 
1

η




 
∂f

∂η
 +

+ 




ξ
2

 − Cν 
K2

E2 
∂E

∂ξ
 + 2Cν 

K

E
 
∂K

∂ξ




 
∂f

∂ξ
 + 





1

2
 − 

1

η2 − Cν 
K2

E
 

1

η2 + Cν 
K2

ηE2 
∂E

∂η
 − 2Cν 

K

ηE
 
∂K

∂η




 f = − 

G0t3
 ⁄ 2+n

√ν
 ,




1 + Cν 

K2

E




 
∂2K

∂η2  + 



1 + Cν 

K2

E




 
∂2K

∂ξ2  + 




η
2

 + 
1

η
 − Cν 

K2

E2 
∂E

∂η
 + 2Cν 

K

E
 
∂K

∂η
 + Cν 

K2

E
 
1

η




 
∂K

∂η
 +

+ 




ξ
2

 − Cν 
K2

E2 
∂E

∂ξ
 + 2Cν 

K

E
 
∂K

∂ξ




 
∂K

∂ξ
 + 




1 + Cν 

K

E
 








∂f

∂η





 2

 + 




∂f

∂ξ





 2


 + Cν 

K

E
 
f 2

η2 + 2Cν 
Kf

ηE
 
∂f

∂η




 K − E = 0 ,




1 + Cν 

K2

E




 
∂2E

∂η2 + 



1 + Cν 

K2

E




 
∂2E

∂ξ2  + 




η
2

 + 
1

η
 − Cν 

K2

E2 
∂E

∂η
 + 2Cν 

K

E
 
∂K

∂η
 + Cν 

K2

E
 
1

η




 
∂E

∂η
 +

+ 




ξ
2

 − Cν 
K2

E2 
∂E

∂ξ
 + 2Cν 

K

E
 
∂K

∂ξ




 
∂E

∂ξ
 + 


2 − C2ε 

E

K



 E +C1εCνK 









∂f

∂η





 2

 + 




f

η





 2

 + 




∂f

∂ξ





 2

 + 2 
∂f

∂η
 
f

η




 = 0 .

Once Eq. (18) is satisfied, the equation of motion takes the form
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1 + Cν 

K2

E




 
∂2f

∂η2 + 



1 + Cν 

K2

E




 
∂2f

∂ξ2 + 




η
2

 + 
1

η
 − Cν 

K2

E2 
∂E

∂η
 + 2Cν 

K

E
 
∂K

∂η
 + Cν 

K2

E
 
1

η



 
∂f

∂η
 +

+ 




ξ
2

 − Cν 
K2

E2 
∂E

∂ξ
 + 2Cν 

K

E
 
∂K

∂ξ




 
∂f

∂ξ
 + 





1

2
 − 

1

η2 − Cν 
K2

E
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ηE2 
∂E
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 f = − 

Gt3
 ⁄ 2

√ν
 .

The results of the analysis of all the cases considered are given in Table 1.
The present investigation has shown that the use of symmetries makes it possible to rather easily

analyze a wide range of nonstationary flows in differently shaped channels. One-dimensional nonstationary
problems are then reduced to ordinary differential equations, and two-dimensional ones, to equations in partial
derivatives with two self-similar variables. If in these equations the time is converted as t = x ⁄ U, where U is
the velocity at the channel inlet, then the relations obtained can be used to analyze flows over the starting
length of the channel (as in [1]), provided that the pressure gradient is described by the Heaviside function.
It should be noted that this kind of calculation method based on the symmetries of the process can be easily
extended to other kinds of nonstationary flows, as, e.g., Couette flows, free convective flows, etc.

TABLE 1. Self-Similar Forms of Nonstationary Channel Flows

Regime Channel η ξ u νΣ k ε

Laminar Plane, one-
dimensional y ⁄ √νt –

ν
h

 f(η) 
tn+1νn+1

h2n+2
– – –

Laminar Cylindrical,
one-dimensional r ⁄ √νt –

ν
R

 f (η) 
tn+1νn+1

R2n+2
– – –

Laminar Curvilinear,
one-dimensional r ⁄ √νt –

ν
R1

 f (η) 
t(2n+1) ⁄ 2ν(2n+1) ⁄ 2

R1
2n+2

– – –

Turbulent,
mixing-path

length

Plane, one-
dimensional y ⁄ √νt – √ν ⁄ t f (η) – – –

Turbulent,
ν model Same

yh3+2n

(νt)2+n
–

ν2+nt1+n

h3+2n
 f (η)

ν4+2nt3+2n

h6+4n
 N(η) – –

Turbulent,
k–ε model » y ⁄ √νt – √ν ⁄ t f (η) – (ν ⁄ t)K(η) (ν ⁄ t2)E(η)

Turbulent,
k–ε model

Cylindrical,
one-dimensional r ⁄ √νt – √ν ⁄ t f (η) – (ν ⁄ t)K(η) (ν ⁄ t2)E(η)

Turbulent,
k–ε model

Curvilinear,
one-dimensional r ⁄ √νt – √ν ⁄ t f (η) – (ν ⁄ t)K(η) (ν ⁄ t2)E(η)

Laminar Rectangular,
two-dimensional y ⁄ √νt z ⁄ √νt

ν
h

 f(η, ξ) 
tn+1νn+1

h2n+2
– – –

Laminar Curvilinear,
two-dimensional r ⁄ √νt z ⁄ √νt

ν
R1

 f (η, ξ) 
t(2n+1) ⁄ 2ν(2n+1) ⁄ 2

R1
2n+2

– – –

Turbulent,
k–ε model

Rectangular,
two-dimensional y ⁄ √νt z ⁄ √νt √ν ⁄ t f (η) – (ν ⁄ t)K(η) (ν ⁄ t2)E(η)

Turbulent,
k–ε model

Curvilinear,
two-dimensional r ⁄ √νt z ⁄ √νt √ν ⁄ t f (η) – (ν ⁄ t)K(η) (ν ⁄ t2)E(η)
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NOTATION

b, width of a channel in the z direction; h, width of a channel in the y direction; k, kinetic energy of
turbulence; p, pressure; r, ϕ, z, cylindrical coordinates; R1 and R2, external and internal radii for the annular
channel, the radii of the convex and concave walls for the curvilinear channel; t, time; u, longitudinal velocity
component; x, coordinate along the flow; y, z, transverse coordinates; ε, dissipation rate; ν, kinematic viscos-
ity; νΣ, total viscosity; ρ, density.
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